

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

CONTROL MODES

- Indexer, Point-to-Point, PVT
- · Camming, Gearing
- · Position, Velocity, Torque

COMMAND INTERFACE

- CANopen application protocol over EtherCAT (CoE)
- ASCII and discrete I/O
- · Stepper commands
- ±10V position/velocity/torque (2 inputs)
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- EtherCAT
- RS-232

FEEDBACK

Incremental

- Digital quad A/B encoder
- · Analog Sin/Cos encoder
- Panasonic Incremental A Format
- · Sanyo Denki Wire-saving Incremental
- Aux. encoder / encoder out

Absolute

- SSI
- EnDat 2.1 & 2.2
- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A
- BiSS (B&C)

Other

• Digital Halls

I/O DIGITAL

- 12 High-speed inputs
- 2 Motor over-temp inputs
- 8 Opto-isolated inputs
- 5 Opto-isolated outputs
- 2 Opto-isolated motor brake outputs

I/O ANALOG

• 2 Reference inputs, 14-bit

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

• 9.24 x 5.42 x 3.59 [234.7 x 137.6 x 91.1]

Model	Vac	Ic	Iр	
XE2-230-20	100~240	10	20	
Add -R to model number for resolver option				

DESCRIPTION

XE2 sets new levels of performance, connectivity, and flexibility. CANopen application protocol over EtherCAT (CoE) communication provides a widely used cost-effective industrial bus. A wide range of absolute encoders are supported. High resolution A/D converters ensure optimal current loop erformance. Both isolated and high-speed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed. An integral fan and heatsink enable the drive to deliver the continuous output currents in any mounting orientation. And, the internal regeneration resistor dissipates the energy returned by load decelerations.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 1 of 36

GENERAL SPECIFICATIONS

Test conditions: Wye connected load: 2 mH line-line. Ambient temperature = 40° C

MODEL	. Wye connected load.	2 mH line-line. Ambient temperatur XE2-230-20	c = 40	
OUTPUT CURRENT (Each A	xis)	ALL ZOO ZO	0~40 C Ambient	
Peak Current		20 (14)	Adc (Arms, sinusoidal)	
Peak time Continuous current		10 (7)	s Adc (Arms, sinusoidal)	
INPUT POWER			· · · · · · · · · · · · · · · · · · ·	
Mains voltage, freq Mains current	uency	100~240 18	Vac, 50/60 Hz Arms, 1 Ø	
Mains current		14	Arms, 3 Ø	
Inrush current		120 Vac, 40 Apeak @ 240 Vac, 40 ms	All models	
Control power	+24 Vdc, ±1 10 W (Typ, n	0% o load on encoder +5V outputs), 31 W, (Required for operation Max, all four encoder +5V @ 500 mA)	
DIGITAL CONTROL	(7)	, (, , , , , , , , , , , , , , , , , , , ,	
Digital Control Loop		Current, velocity, position. 100% digit		
Sampling rate (time Bus voltage compe		Current loop: 16 kHz (62.5 µs), Velocity & position loops: 4 kHz (250 µs) Changes in bus or mains voltage do not affect bandwidth		
Minimum load indu	ctance	200 μH line-line		
COMMAND INPUTS (NOTE:		IS ARE PROGRAMMABLE)		
Distributed Control Modes CANopen application (orotocol over EtherCAT	Cyclic synchronous Position-Velocity-To	oraue, Profile Position-Velocity-Toraue,	
		Interpolated position, Homing	4,	
Stand-alone mode Analog torque, velocit	v nosition reference	±10 Vdc, 14 bit resolution	Dedicated differential analog input	
Digital position refere		Pulse/Direction, CW/CCW	Stepper commands (2 MHz maximum rate)	
Digital targue 9, vales	ity reference	Quad A/B Encoder	2 M line/sec, 8 Mcount/sec (after quadrature)	
Digital torque & veloc	ity reference	PWM , Polarity PWM 50%	PWM = 0% - 100%, $Polarity = 1/0PWM = 50\% \pm 50\%, no polarity signal required$	
		PWM frequency range	1 kHz minimum, 100 kHz maximum	
Indexing		PWM minimum pulse width Up to 32 sequences can be launched for	220 ns	
Camming		Up to 10 CAM tables can be stored in f	flash memory	
ASCII		RS-232, 9600~115,200 Baud, 3-wire,	RJ-12 connector	
Function Generator Software Programmed	i	Internal function generator Position-Velocity-Torque control via CV	M, or ASCII commands	
DIGITAL INPUTS			,	
Number	22 Digital Cabasitt tuissas 1	Fire DC files: 24 Vda assessible 15kg	and an area had a sulf to a factor to the FM defension of	
[IN1,11]		.5 μs RC filter, 24 Vac compatible, 15κΩ = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc	programmable pull-up/down to +5 Vdc/ground,	
[IN21, 22]	Same specs as IN1 & IN1	1, but with fixed 15 k Ω pull-up to +5 Vdo		
[IN2~5,12~15]		ended or differential pairs, 100 ns RC filte -up/down per input to +5 Vdc/ground,	er, 5 Vdc max,	
	SE: Vin-LO ≤ 2.3 Vdc, Vir	$n-HI \ge 2.7 \text{ Vdc, VH} = 45 \text{ mV typ, DIFF: V}$	/in-LO \leq 200 mVdc, Vin-HI \geq 200 mVdc, VH = 45 mV typ,	
[IN6~9,16~19]			groups of 4 with common return for each group	
[IN10,20]		in-LO \leq 6.0 Vdc, Vin-HI \geq 10.0 Vdc, Inpose feedback connectors, , Schmitt trigger,		
		llup to +5 Vdc, $Vt+ = 2.5 \sim 3.5 Vdc, VT-$		
ANALOG INPUTS	2			
Number [AIN1~2]	2 Differential, ±10 Vdc, 5 kg	Ω input impedance, 14-bit resolution		
SAFE TORQUE OFF (STO)		P		
Function	PWM outputs are inactive	and current to the motor will not be pos	sible when the STO function is asserted	
Standard	Designed to IEC-61508-1	, IEC-61508-2, IEC-61800-5-2, ISO-138		
Safety Integrity Level Inputs	SIL 3, Category 3, Perform	mance level d +,STO-IN1-, STO-IN2+, STO-IN2-		
Type	Opto-isolators, 24V comp	atible, Vin-LO ≤ 6.0 Vdc or open, Vin-HI	≥ 15.0 Vdc,	
Input current (typical) Response time	STO-IN1: 9.0 mA, STO-IN	N2: 4.5 mA to interruption of energy supplied to moto		
Reference		and specifications are in the Xenus P		
RS-232 PORT	-			
Signals		on, 4-contact RJ-11 style modular conne		
Mode Protocol	Binary and ASCII formats	mmunication port for drive setup and cor	11101, 9,600 to 115,200 baud	
DIGITAL OUTPUTS	<u> </u>			
Number	7			
[OUT1~5] [OUT6~7]		-terminal, 300 mA max, 24 V tolerant, R bto-isolated, current-sinking with flyback	ated impulse $\geq 800 \text{ V}$, series 20Ω resistor diode to $+24 \text{ Vdc}$, 1 Adc max	
ETHERCAT PORTS	brake controll of		ELECTION EL TROY EN MONTHAN	
Format	Dual RJ-45 receptacles, 1			
Protocol	EtherCAT, CAN application	n layer over EtherCAT (CoE)		
STATUS INDICATOR LEDS Drive Status	Bicolor LED, drive status i	ndicated by color, and blinking or non-bli	nking condition	
CAN Status		I bus indicated by color and blink codes t		
5V OUTPUT	A	(110, 111)	(112) for the A and B and III and I	
Number Ratings		onnectors (J10, J11), two on the control of al and overload protected, each output. I	connector (J12) for the A and B multi-mode ports 2000 mA total for all four outputs	
	,	,,	6 1 1 1	

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 2 of 36

GENERAL SPECIFICATIONS

REGENERATION			
Operation	Internal solid-state sv	witch drives external regen resistor (see Ordering Guide for types)	
Cut-In Voltage	+HV > 390 Vdc	Regen output is on, (optional external) regen resistor is dissipating energy	
Drop-Out Voltage	+HV < 380 Vdc	Regen output is off, (optional external) regen resistor not dissipating energy	
Tolerance	±2 Vdc	For either Cut-In or Drop-Out voltage	
PROTECTIONS			
HV Overvoltage	+HV > 400 Vdc	Drive PWM outputs turn off until +HV is less than overvoltage	
HV Undervoltage	+HV < 60 Vdc	Drive PWM outputs turn off until +HV is greater than undervoltage	
Drive over temperature	IGBT > 80 °C ±3 °C	Drive PWM outputs turn off until IGBT temperature is below threshold	
Short circuits	Output to output, out	put to ground, internal PWM bridge faults	
I ² T Current limiting	Programmable: conti	nuous current, peak current, peak time	
Motor over temperature	Programmable input	to disable drive when voltage is above or below a set point 0~5 Vdc	
Feedback power loss	Fault occurs if feedba	ck is removed or +5 V is <85% of normal	
MECHANICAL & ENVIRONMENTAL			
Size	9.24 x 5.42 x 3.59 [234.7 x 137.6 x 91.1] in[mm]		
Weight	4.19 lb [1.90kg]		
Ambient temperature	0 to +40 °C operating, -40 to +85 °C storage		
Humidity	0% to 95%, non-con	densing	
Contaminants	Pollution degree 2	-	
Vibration	2 g peak, $10 \sim 500 \text{ Hz}$	(sine), IEC60068-2-6	
Shock	10 g, 10 ms, half-sine	e pulse, IEC60068-2-27	
Environment	IEC68-2: 1990		
OPTIONS			
XTL-FA-01 Edge Filter	One used for each m	otor output. A passive R-L-C filter that reduces capacitive coupling of PWM outputs	
···-··-		y lengthening the rise/fall times and providing common-mode filtering of the	
		ly used in systems that have servo drives operating near other cables	
		de sensor or video signals.	
	Further details on the XTL-RA-04 can be found in the Xenus Regeneration Guide on the Copley Controls web-site		
		ntrols.com/Motion/pdf/Xenus_regen_guide-03-04.pdf	
	the state of the s		

Used when the regenerative energy from a moving load is greater than the absorption

Copley Controls web-site: http://www.copleycontrols.com/Motion/pdf/Xenus-Filter.pdf

AGENCY STANDARDS CONFORMANCE

XTL-RA-04 Regen Resistor

Approvals

UL and cUL recognized component to UL 61800-5-1 (file no. E168959) TÜV SÜD Functional Safety to IEC 61508 and ISO 13849

IEC 61508-1, IEC 61508-2, EN (ISO) 13849-1, EN (ISO) 13849-2, IEC 61800-5-2

10 kW peak power, 1000 ms peak power time.

(see The Xenus Plus Dual-Axis STO Manual for further detail)

Electrical Safety

Directive 2006/95/EC - Low Voltage: IEC 61800-5-1:2007

UL 61800-5-1-2012

FMC.

Directive 2004/108/EC - EMC: IEC 61800-3:2004+A1:2011

capacity of the internal regen resistor. 15 Ω , 65 W default continuous power, 400 W max continuous power

Further details on the XTL-FA-01 can be found in the XTL-FA-01 Edge Filter for Xenus User Guide on the

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 3 of 36

Fax: 781-828-6547

Page 4 of 36

FEEDBACK: XE2-230-20

FEEDBACK
Incremental:

Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) 5 MHz maximum line frequency (20 M counts/sec) Digital Incremental Encoder

MAX3097 differential line receiver with 121 Ω terminating resistor between complementary inputs

Analog Incremental Encoder

Sin/cos format (sin+, sin-, cos+, cos-), differential, 1 Vpeak-peak, ServoTube motor compatible, BW > 300 kHz, 121 Ω terminating resistor between complementary inputs

Differential, $121~\Omega$ terminating resistor between complementary inputs, 1~Vpeak-peak zero-crossing detect

Panasonic Incremental A Format

Sanyo Denki Wire-saving Incremental

Absolute:

SSI Clock (X, /X), Data (S, /S) signals, 4-wire, clock output from XE2, data returned from encoder

EnDAT Clock (X, /X), Data (S, /S), sin/cos (sin+, sin-, cos+, cos-) signals

Absolute A, Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A

SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication

Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data)

Status data for encoder operating conditions and errors MA+, MA- (X, /X), SL+, SL- (S, /S) signals, 4-wire, clock output from XE2, data returned from encoder BiSS (B&C)

DIGITAL HALLS

Inputs

Digital, single-ended, 120° electrical phase difference between U-V-W signals, Type

Schmitt trigger, 1 μ s RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground, Vt+ = 2.5 \sim 3.5 Vdc, VT- = 1.3 \sim 2.2 Vdc, VH = 0.7 \sim 1.5 Vdc

10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters

MULTI-MODE ENCODER PORT

Analog Index signal

As Input Digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors between A & /A, B & /B inputs

18 M-counts/sec, post-quadrature (4.5 M-lines/sec)

Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors As Emulated Output

Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev

from analog sin/cos encoders

A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver

+5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)

ENCODER POWER SUPPLIES

Ratings

As Buffered Output

4, two on the feedback connectors (J10, J11), two on the control connector (J12) Number

for the A and B multi-mode ports

Ratings +5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)

FEEDBACK: XE2-230-20-R

RESOLVER	
Type	Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio
Resolution	14 bits (equivalent to a 4096 line quadrature encoder)
Reference frequency	8.0 kHz
Reference voltage	2.8 Vrms, auto-adjustable by the drive to maximize feedback
Reference maximum current	
Maximum RPM	10,000+
Sin/Cos inputs	Differential, 54k $\pm 1\%$ differential impedance, 2.0 Vrms, BW ≥ 300 kHz
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals,
	Schmitt trigger, 1 µs RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground,
	$Vt+ = 2.5 \sim 3.5 \text{ Vdc}$, $VT- = 1.3 \sim 2.2 \text{ Vdc}$, $VH = 0.7 \sim 1.5 \text{ Vdc}$
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 121Ω terminating resistors between A & /A, B & /B inputs 18 M-counts/sec, post-quadrature (4.5 M-lines/sec)
	Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors (See above for listing of absolute encoder types. EnDat Sin/Cos signals are not supported)
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from
	resolver, A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers
ENCODER POWER SUPPLIES	
Number	4, two on the feedback connectors (J10, J11), two on the control connector (J12) for the A and B multi-mode ports

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

ETHERCAT COMMUNICATIONS

ETHERCAT CONNECTIONS

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is 'upstream', between the Xenus Plus and the master. The OUT port connects to 'downstream' nodes. If Xenus Plus is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

ETHERCAT LEDS (ON RJ-45 CONNECTORS)

A green LED indicates the state of the EtherCAT network:
LED Link Activity Condition

Activity ON No Port Open Yes

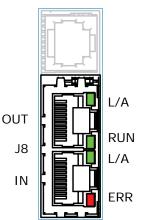
Port Open with activity Flickering Yes Yes

Off No (N/A)Port Closed

Green: Shows the state of the ESM (EtherCAT State Machine)

Init

Blinking Pre-operational Single-flash = Safe-operational Operational


ERR Red: Shows errors such as watchdog timeouts and unsolicited state changes in the XE2 due to local errors.

EtherCAT communications are working correctly Invalid configuration, general configuration error Local error, slave has changed EtherCAT state autonomously Blinking

Single Flash =

PDO or EtherCAT watchdog timeout, Double Flash =

or an application watchdog timeout has occurred

J8: EtherCAT PORTS RJ-45 receptacles, 8 position, 4 contact

PIN	SIGNAL	
1	TX+	
2	TX-	
3	RX+	
6	RX-	

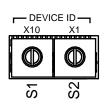
EtherCAT DEVICE ID (STATION ALIAS)

In an EtherCAT network, slaves are automatically assigned consecutive addresses based on their position on the network. But when the device must have a positive identification that is independent of cabling, a Device ID is used. This is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x00~0xFF (0~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107

1) Find the highest number in the x10 column that is less than 107 and

set x10 to the hex value in the same row: 96 < 107 and 112 > 107, so x10 = 96 = Hex 6


2) Subtract 96 from the desired Device ID to get the decimal value

switch x1 and set it to the Hex value in the same row: x1 = (107 - 96) = 11 = Hex B

3) Result: X10 = 6, X1 = B, Alias = 0x6B (107)

CME2 -> Amplifier -> Network Configuration

EtherCAT Device ID Switch Decimal values

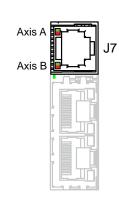
Set	x10	x1	Set	x10	x1
Hex	Dec		Hex	D	ec
0	0	0	8	128	8
1	16	1	9	144	9
2	32	2	Α	160	10
3	48	3	В	176	11
4	64	4	С	192	12
5	80	5	D	208	13
6	96	6	E	224	14
7	112	7	F	240	15

INDICATORS: DRIVE STATE

A bi-color LED gives the state of each axis. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown

- 2) Red/Solid
- = Latching fault. Operation will not resume until drive is Reset. Transient fault condition. Drive will resume operation when
- 1) Red/Blinking
 - the condition causing the fault is removed.
- 3) Green/Double-Blinking = 4) Green/Slow-Blinking
- STO circuit active, drive outputs are Safe-Torque-Off
- Drive OK but NOT-enabled. Will run when enabled.
- 5) Green/Fast-Blinking
- Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch.
- 7) Green/Solid Drive OK and enabled. Will run in response to
 - reference inputs or EtherCAT commands.

Latching Faults


Default

Short circuit (Internal or external)

- Drive over-temperature
- Motor over-temperature
- Feedback Error Following Error

Optional (programmable)

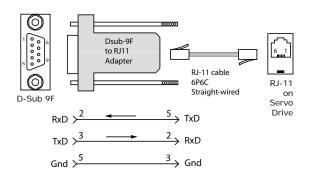
- Over-voltage
- Under-voltage
- Motor Phasing Error
- Command Input Fault Motor Wiring Disconnected
- STO Active
- Over Current (I2T Limit)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Page 5 of 36

Fax: 781-828-6547


COMMUNICATIONS: RS-232 SERIAL

RS-232 COMMUNICATIONS

XE2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the XE2 RS-232 port are through J7, an RJ-11 connector. The XE2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the XE2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the XE2. The connections are shown in the diagram below.

J6: RS-232 PORT RJ-11 receptacle, 6 position, 4 contact

PIN	SIGNAL	
2	RxD	
3,4	Gnd	
5	Txd	

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an XE2!

ASCII COMMUNICATION PROTOCOL

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate these drives over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

- Enable the amplifier in Programmed Position mode.
- · Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII_ProgrammersGuide.pdf

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547

Page 6 of 36

SAFE TORQUE OFF (STO)

DESCRIPTION

The XE2 provides the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Three opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

Refer to the Xenus Plus Dual-Axis STO User Manual

The information provided in the Xenus Plus Dual-Axis STO User Manual must be considered for any application using the XE2 drive STO feature.

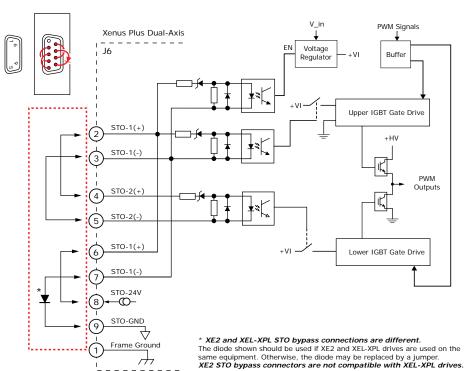
Failure to heed this warning can cause equipment damage, injury, or death.

STO BYPASS (MUTING)

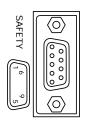
In order for the PWM outputs of the drive to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-1 and STO-2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor. This diagram shows connections that will energize all of the opto-couplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be made in order for the drive to be enabled.

STO BYPASS CONNECTIONS


Bypass Plug Connections Jumper pins: 2-4, 3-5, 6-8, 7-9 *

Note: STO applies to Axis-A AND Axis-B



Current must flow through all of the opto-couplers before the drive can be enabled

* STO bypass connections on the XE2 and Xenus XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the XE2 and can be replaced by a wire between pins 7 and 9.

STO CONNECTOR

J5 SIGNALS

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		-

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547

Page 7 of 36

DIGITAL COMMAND INPUTS: IN2, IN3, IN4, IN5, IN12, IN13, IN14, IN15

DIGITAL POSITION

Digital position commands can be in either single-ended or differential format. Single-ended signals should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. Differential inputs have 121 Ω line-terminators.

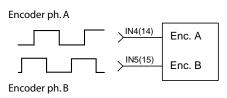
SINGLE-ENDED PULSE & DIRECTION

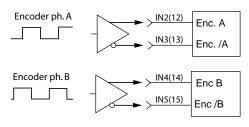

DIFFERENTIAL PULSE & DIRECTION

COMMAND SINGLE-ENDED

Signal	Axis A	Axis B	
Pls, Enc A	J12-10	J12-15	
Dir, Enc B	J12-11	J12-30	
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

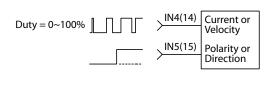
SINGLE-ENDED CU/CD

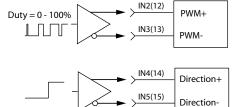

DIFFERENTIAL CU/CD


COMMAND DIFFERENTIAL

Signal	Axis A	Axis B	
Pls, Enc A	J12-8	J12-13	
/PIs, Enc /A	J12-9	J12-14	
Dir, Enc B	J12-10 J12-15		
/Dir, Enc /B	J12-11 J12-30		
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

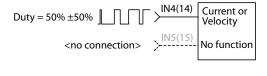
QUAD A/B ENCODER SINGLE-ENDED

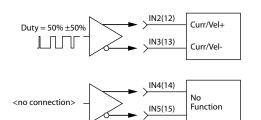

QUAD A/B ENCODER DIFFERENTIAL


DIGITAL TORQUE, VELOCITY

Digital torque or velocity commands can be in either single-ended or differential format. Single-ended signals must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

SINGLE-ENDED PWM & DIRECTION


DIFFERENTIAL PWM & DIRECTION


COMMAND SINGLE-ENDED

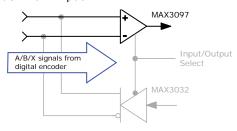
Signal	Axis A	Axis B	
PWM	J12-10	J12-15	
Dir	J12-11	J12-30	
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

SINGLE-ENDED 50% PWM

DIFFERENTIAL 50% PWM

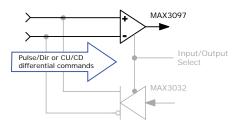
COMMAND DIFFERENTIAL

Signal	Axis A Axis B	
PWM	J12-8 J12-1	
/PWM	J12-9	J12-14
Dir	J12-10	J12-15
/Dir	J12-11 J12-3	
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	

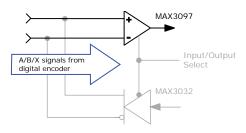

Rev 01 **XE2** RoHS

MULTI-MODE ENCODER PORT AS AN INPUT

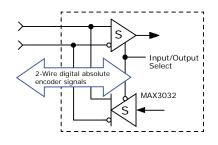
INPUT TYPES

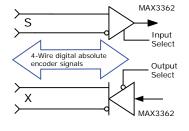

POSITION COMMAND INPUTS: DIFFERENTIAL

- · Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input

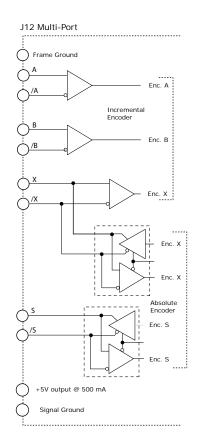

CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL


- Quad A/B/X incremental encoder
- Quad A/B emulated encoder from sin/cos encoder

SECONDARY FEEDBACK: ABSOLUTE


- S channel: Absolute A encoders (2-wire)
 The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire)
 The X channel sends the Clock signal to the encoder,
 which initiates data transmission from the encoder
 on the S-channel in full-duplex mode

COMMAND INPUT MULTI-PORT

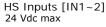
Signal	Axis A	Axis B
Pls, Enc A	J12-36	J12-42
/Pls, Enc /A	J12-21	J12-27
Dir, Enc B	J12-35	J12-41
/Dir, Enc /B	J12-20	J12-26
Enc X	J12-34	J12-40
Enc /X	J12-19	J12-25
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	

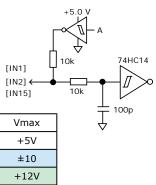
EMULATED QUAD A/B/X MULTI-PORT

Signal	Axis A	Axis B	
Enc A	J12-36	J12-42	
Enc /A	J12-21	J12-27	
Enc B	J12-35	J12-41	
Enc /B	J12-20	J12-26	
Enc X	J12-34 J12-40		
Enc /X	J12-19 J12-25		
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

Fax: 781-828-6547

Page 9 of 36

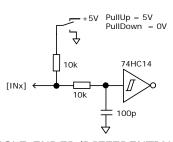



+24V ±24V

Xenus PLUS 2-Axis EtherCAT

Rev 01 **XE2** RoHS

GENERAL PURPOSE INPUTS

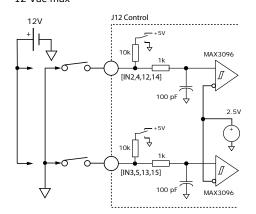


Input	Pin	R1	R2	C1	Vm
*IN1	J12-7	15k	10k	100p	+24
*IN2	J12-8				
*IN3	J12-9	101.	41.	100-	. 10
*IN4	J12-10	10k	1k	100p	+12
*IN5	J12-11				
IN6	J9-2				
IN7	J9-3				
IN8	J9-4		Opto		±24
IN9	J9-5				
ICOM1	J9-6				
IN10	J10-7	4.99k	10k	33n	+24
IN21	J10-24	15k	10k	100p	+24

Input	Pin	R1	R2	C1	Vm
*IN11	J12-12	15k	10k	100p	+24
*IN12	J12-13				
*IN13	J12-14	10k			. 10
*IN14	J12-15	TUK	1k	100p	+12
*IN15	J12-30				
IN16	J9-7				
IN17	J9-8				
IN18	J9-9		Opto		±24
IN19	J9-18				
ICOM2	J9-17				
IN20	J11-7	4.99k	10k	33n	+24
IN22	J11-24	15k	10k	100p	+24

* PROGRAMMABLE PULL UP/DOWN

The input resistor of these inputs is programmable to pull-up to +5V or pull-down to OV. Pull-up is the default and works with current-sinking outputs from a controller. Pull-down works with current-sourcing outputs, typically PLC's that drive grounded loads. Six of the inputs have individually settable PU/PD. The other four have PU/PD control for pairs of inputs.



SINGLE-ENDED/DIFFERENTIAL DIGITAL INPUTS [IN2~5,12~15]

These inputs have all the programmable functions of the GP inputs plus these additional functions which can be configured as single-ended (SE) or differential (DIFF):

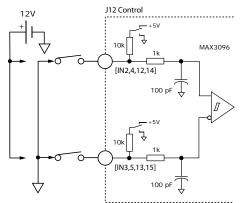
- PWM 50%, PWM & Direction for Velocity or Current modes
- Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes

SINGLE-ENDED 12 Vdc max

INPUTS WITH PROGRAMMABLE PULL UP/DOWN

Input	Pin	PU/PD	
IN1	J12-7	1	
IN2	J12-8	2	
IN3	J12-9	3	
IN4	J12-10	1	
IN5	J12-11	4	

Input	Pin	PU/PD
IN11	J12-12	5
IN12	J12-13	6
IN13	J12-14	7
IN14	J12-15	8
IN15	J12-30	8


[IN2~5,12~15] SIGNALS

[0,]				
S.E.	Diff	Pin		
Input	Input	PIII		
IN2	IN2+	J12-8		
IN3	IN2-	J12-9		
IN4	IN4+	J12-10		
IN5	IN4-	J12-11		

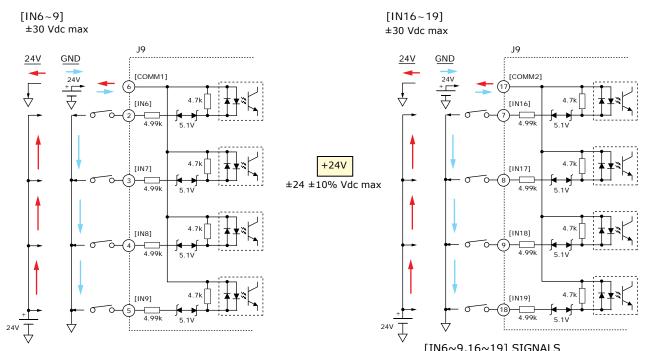
S.E.	Diff	Pin
Input	Input	PIII
IN12	IN12+	J12-13
IN13	IN12-	J12-14
IN14	IN14+	J12-15
IN15	IN14-	J12-30
	Input IN12 IN13 IN14	Input Input IN12 IN12+ IN13 IN12- IN14 IN14+

DIFFERENTIAL

12 Vdc max

PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Xenus inputs to pull-down to ground for current-sourcing connections, and to pull-up to 5V for current-sinking connections.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 10 of 36



OPTO-ISOLATED INPUTS: IN6, IN7, IN8, IN9, IN16, IN17, IN18, IN19

These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, each with a common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to ± 24 V, the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc.

IN THE GRAPHICS BELOW, "24V" IS FOR CONNECTIONS TO CURRENT-SOURCING OUTPUTS AND "GND" IS FOR CURRENT-SINKING OUTPUTS ON THE CONTROL SYSTEM

These inputs work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to $\pm 24V$ for current-sinking connections.

The 24V power shown in these connection diagrams does not have to be connected to the logic power supply for the drive, and is commonly provided in the control system to power relays and other devices.

1110109,101913 SIGNALS				
Signal	Pins	Signal	Pins	
IN6	J9-2	IN16	J9-7	
IN7	J9-3	IN17	J9-8	
IN8	J9-4	IN18	J9-9	
IN9	J9-5	IN19	J9-18	
COMM1	J9-6	COMM2	J9-17	

Fax: 781-828-6547

Page 11 of 36

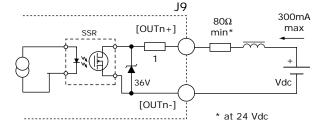
ANALOG INPUTS

The analog inputs have a ± 10 Vdc range at 14-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

[AIN A,B] SIGNALS

Signal	Axis A	Axis B	
AIN(+)	J12-3	J12-5	
AIN(-)	J12-2	J12-4	
Sgnd	J12-6,16,22,31,37,44		
Shield	J12-1		

[AIN A,B]



ISOLATED GENERAL PURPOSE OUTPUTS OUT1~5

- Digital, opto-isolated
- SSR, 2-terminal
- Flyback diode for inductive loads
- 24V Compatible
- · Programmable functions

[OUT1~5] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J9-19	[OUT1-]	J9-10
[OUT2+]	J9-20	[OUT2-]	J9-11
[OUT3+]	J9-21	[OUT3-]	J9-12
[OUT4+]	J9-22	[OUT4-]	J9-13
[OUT5+]	J9-23	[OUT5-]	J9-14

HI/LO DEFINITIONS: [OUT1~5]

Input	State	Condition
OUT1∼5	HI	Output transistor is ON, current flows
0011~5	LO	Output transistor is OFF, no current flows

±30Vmax ±24V typical

30 Vdc max

Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547

Page 12 of 36

ISOLATED BRAKE OUTPUTS

- · Brake outputs Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

There should be only one conductor in each position of the J5 connector. If brakes are to be wired directly to J5 for their 24V power, use a double wire ferrule for J5-4. Information for ferrules can be found on page 27. Axis A Brake Axis B Brake 24V

The brake circuits are optically isolated from all drive circuits and frame ground.

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRK-A,B OUT6,7	НІ	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active	

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move

No current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive output current is zero

Servo drive is disabled, PWM outputs are off

Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*)

Motor can move

Current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on

Servo drive output current is flowing

CONNECTIONS

Pin	Signal
5	+24V
4	+24V
3	A Brk [OUT6]
2	B Brk [OUT7]
1	24V Return

Brake

J5
Brake

J12
Control

G
J12
Control

G
J12
Control

G
J13
Signal
Ground

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply 0V terminals.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 13 of 36

MOTOR CONNECTIONS: ENCODER & RESOLVER

Motor connections are of three types: phase, feedback, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. Feedback can be digital quad A/B encoder, analog sin/cos encoder, resolver or digital Halls, depending on the version of the drive.

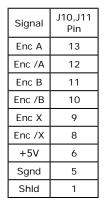
QUAD A/B ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

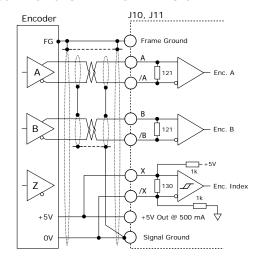
Short-circuits line-line: This produces a near-zero voltage between A & /A which is below the differential fault threshold.

Open-circuit condition: The 121Ω terminator resistor will pull the inputs together if either side (or both) is open.

This will produce the same fault condition as a short-circuit across the inputs.


Low differential voltage detection: This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.

 $\pm 15kV$ ESD protection: The 3097E has protection against high-voltage discharges using the Human Body Model. Extended common-mode range: A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

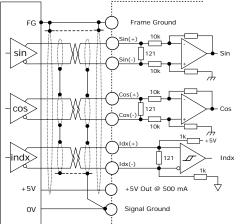

CONNECTIONS WITH A/B/X ENCODER*

Frame Ground A 121 Enc. A B 121 Frame Ground Enc. A Frame Ground Frame Ground Frame Ground Signal Ground

A/B/X SIGNALS

CONNECTIONS WITH NO INDEX SIGNAL*

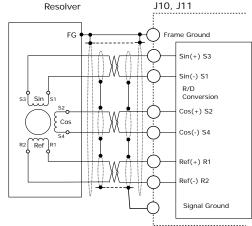
SHIELDED CABLE CONNECTIONS


Encode

Double-shielded cable is recommended for resolvers and analog sin/cos encoders. The outer shield connects to the motor and drive frames. The inner shield(s) should only connect to the Signal Ground at the drive. The inner shields shown here are for individually shielded twisted-pair cables. If the inner shield is a single one, it connects to Signal Ground at the drive. The inner shield should have no connection at the motor, or the the outer shield. Double-shielding is used less frequently for digital encoders, but the connections are shown here and on following pages for completeness.

ANALOG SIN/COS INCREMENTAL ENCODER**

The sin/cos/idx inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors.


J10, J11 SIN/COS SIGNALS

Signal	J10,J11 Pin
Sin(+)	19
Sin(-)	18
Cos(+)	21
Cos(-)	20
Idx(+)	23
ldx(-)	22
+5V	17
Sgnd	16
Shld	1

RESOLVER (XE2-230-20-R)

Resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.

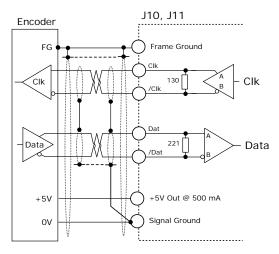
1	Signal	J10,J11 Pin
	Sin(+) S3	19
	Sin(-) S1	18
	Cos(+) S2	21
	Cos(-) S4	20
	Ref(+) R1	23
	Ref(-) R2	22
	+5V	17
	Sgnd	16
	Shld	1
1		

Fax: 781-828-6547

Page 14 of 36

RESOLVER SIGNALS

Notes for XE2-230-20-R model:


- * These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.
- ** Sin/Cos feedback is not supported.

MOTOR CONNECTIONS: ABSOLUTE ENCODERS

SSI ABSOLUTE ENCODER*

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

BISS ABSOLUTE ENCODER*

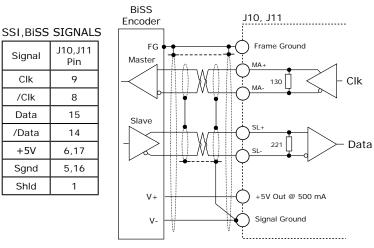
BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication

Cyclic at high speed

2 unidirectional lines Clock and Data

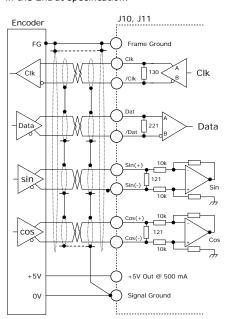
Line delay compensation for high speed data transfer


Request for data generation at slaves Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators

Bidirectional

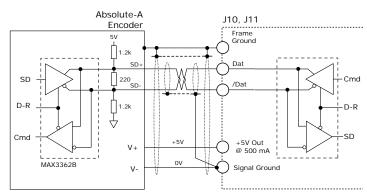
BiSS B-protocol: Mode choice at each cycle start


BiSS C-protocol: Continuous mode

J10,J11 Pin
9
8
15
14
6,17
5,16
1

ENDAT ABSOLUTE ENCODER*

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable as is the use of sin/cos channels. Use of sin/cos incremental signals is optional in the EnDat specification.



ENDAT SIGNALS

ENDAT SIGNALS	
Signal	J10,J11 Pin
Clk	9
/Clk	8
Data	15
/Data	14
Sin(+)	19
Sin(-)	18
Cos(+)	21
Cos(-)	20
+5V	6,17
Sgnd	5,16
Shld	1

ABSOLUTE-A ENCODER & INCREMENTAL A*

The interface is a serial, half-duplex type that is electrically the same as RS-485

ABSOLUTE ENCODERS

Absolute-A Tamagawa Absolute-A Panasonic Absolute A Format Sanyo Denki Absolute-A

INCREMENTAL ENCODERS Panasonic Incremental A

ABSOLUTE-A SIGNALS

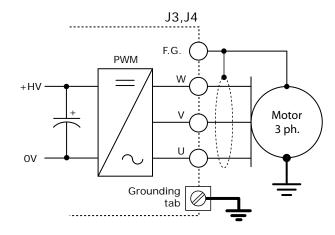
Signal	J10,J11 Pin
Data	15
/Data	14
+5V	6,17
Sgnd	5,16
Shld	1

Fax: 781-828-6547

Page 15 of 36

Notes for XE2-230-20-R model:

^{*} These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.

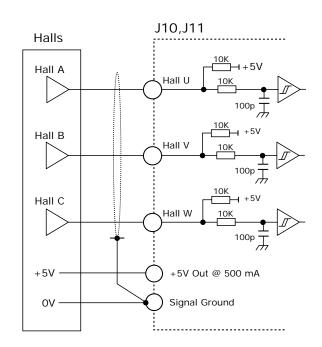


MOTOR CONNECTIONS: MOTOR, HALLS, OVERTEMP

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J3,J4-1) for best results.

MOTOR SIGNALS Signal J3,J4 Pin Mot U 4 Mot V 3 Mot W 2 Shield 1



DIGITAL HALL SIGNALS

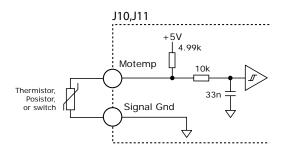
Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.

HALL SIGNALS

Signal	J10,J11 Pin
Hall U	2
Hall V	3
Hall W	4
+5V	6,17
Sgnd	5,16 25,26

MOTEMP SIGNALS

Signal	Pin
Motemp A	J10-7
Motemp B	J11-7
Sgnd	J10,J11 -5,16,25,26


+30Vmax +24V typical

+24V

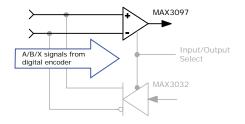
Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

Fax: 781-828-6547

Page 16 of 36

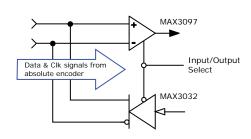


MULTI-MODE ENCODER PORT

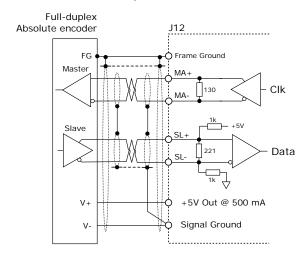
The multi-mode port can operate as primary or secondary feedback from digital quad A/B/X or absolute encoders.

FEEDBACK FROM DIGITAL QUADRATURE ENCODER

When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.



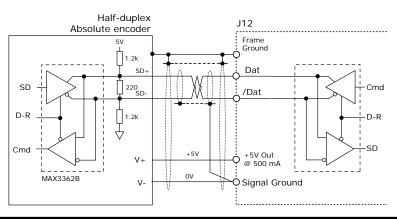
EMULATED QUAD A/B/X MULTI-PORT


Signal	Axis A Pin	Axis B Pin	
Enc A	J12-36	J12-42	
Enc /A	J12-21	J12-27	
Enc B	J12-35	J12-41	
Enc /B	J12-20	J12-26	
Enc X	J12-34	J12-40	
Enc /X	J12-19	J12-25	
+5V	32,17	J12-38,23	
Sgnd	J12-31,16	J12-37,22	
Shld	J12-1		

FEEDBACK FROM ABSOLUTE ENCODERS

Digital absolute encoder feedback as motor or load encoder can come from absolute encoders, too. Analog sin/cos and index signals are not supported by the multi-port. The graphic to the right shows half-duplex format but both full and half-duplex operation are supported by the multi-port (see below)

ABSOLUTE ENCODER, FULL-DUPLEX MODE


FULL-DUPLEX ENCODERS SSI EnDat BISS

HALF-DUPLEX ENCODERS Absolute-A Tamagawa Absolute-A Panasonic Absolute-A Format Sanyo Denki Absolute-A

FULL-DUPLEX SIGNALS

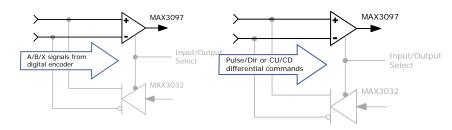
Signal	Axis A Pin	Axis B Pin
Clk, MA+	J12-34	J12-40
/CIk, MA-	J12-19	J12-25
Dat, SL+	J12-33	J12-39
/Dat, SL-	J12-18	J12-24
+5V	J12-32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	

ABSOLUTE ENCODER, HALF-DUPLEX MODE

HALF-DUPLEX SIGNALS

Signal	Axis A Pin	Axis B Pin	
Dat	J12-33	J12-39	
/Dat	J12-18	J12-24	
+5V	J12-32,17	J12-38,23	
Sgnd	J12-31,16	J12-37,22	
Shld	J12-1		

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com


Fax: 781-828-6547 Page 17 of 36

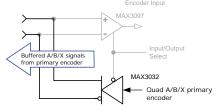
MULTI-MODE ENCODER PORT: COMMAND INPUTS

AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER

When operating in position mode the multimode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.

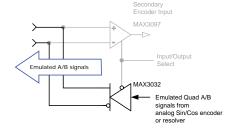
COMMAND INPUTS MULTI-PORT

Signal		Axis A Pin	Axis B Pin	
Enc A	Pulse	CW	J12-36	J12-42
Enc /A	/Pulse	/CW	J12-21	J12-27
Enc B	Dir	CCW	J12-35	J12-41
Enc /B	/Dir	/CCW	J12-20	J12-26
Enc X			J12-34	J12-40
Enc /X			J12-19	J12-25
+5V		32,17	J12-38,23	
Sgnd		J12-31,16	J12-37,22	
Frame Gnd		J12	2-1	


AS DIGITAL COMMAND INPUTS IN PULSE/ DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.

MULTI-MODE ENCODER PORT: FEEDBACK OUTPUTS


AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER*

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J12, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

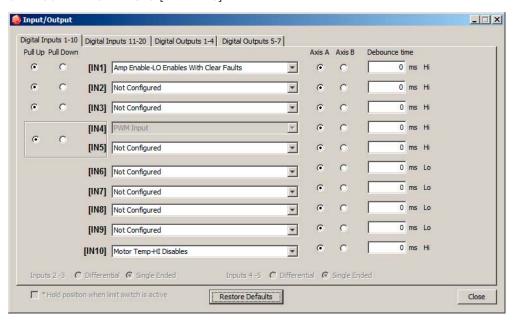
AS EMULATED QUAD A/B ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER*

Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B signals that can be used as feedback to an external control system.

BUFFERED OUTPUTS MULTI-PORT

Axis A Pin	Axis B Pin	
J12-36	J12-42	
J12-21	J12-27	
J12-35	J12-41	
J12-20	J12-26	
J12-34	J12-40	
J12-19	J12-25	
32,17	J12-38,23	
J12-31,16	J12-37,22	
J12-1		
	Pin J12-36 J12-21 J12-35 J12-20 J12-34 J12-19 32,17 J12-31,16	

Notes for XE2-230-20-R model:


- * Buffered outputs from digital encoders on J10 & J11 are not supported.
- ** Emulated quad A/B outputs are only supported for resolver feedback

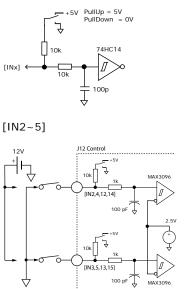
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 18 of 36

CME2 & AXIS A I/O CONNECTIONS

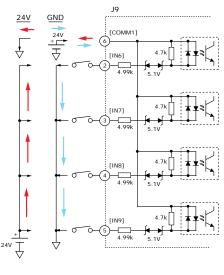
CME2 SCREEN FOR INPUTS [IN1~IN10]

+30Vmax +24V typical

+24V


Vmax

+5V

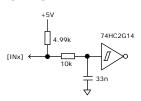

INPUT DATA

Input	Pin	R1	R2	C1	
IN1	J12-7	15k	15k 10k		
IN2	J12-8				
IN3	J12-9	101	1k	400	
IN4	J12-10	10k	100p		
IN5	J12-11				
IN6	J10-2				
IN7	J10-3				
IN8	J10-4	Opto			
IN9	J10-5				
ICOM1	J10-6				
IN10	J11-7	4.99k	10k	33n	
IN21	J11-24	15k	10k	100p	

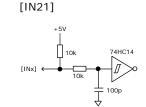
[IN1]

[IN6~9]

HI/LO DEFINITIONS: INPUTS


Input	State	Condition	
INI 10 21	HI	Vin >= 2.5 Vdc	
IN1,10,21	LO	Vin <= 1.3 Vdc	
IN2~5	HI	Vin > 2.5 Vdc	
IIVZ~5	LO	Vin < 2.5 Vdc	
IN6~9	HI	Input diode ON	
1100~9	LO	Input diode OFF	

IN6~9 are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF.


INPUTS WITH PROGRAMMABLE PULL UP/DOWN

Input	Pin	PU/PD	
IN1	J12-7	1	
IN2	J12-8	2	
IN3	J12-9	3	
IN4	J12-10	4	
IN5	J12-11	4	

,

[IN10]

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 19 of 36

CME2 & AXIS B I/O CONNECTIONS

CME2 SCREEN FOR INPUTS [IN11~IN20]

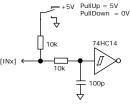
+30Vmax +24V typical

+24V

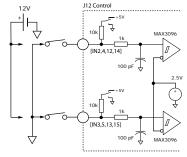
Vmax

+5V

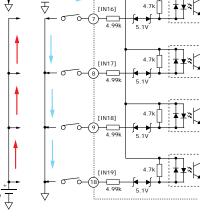
INPUT DATA


Input	Pin	R1 R2		C1	
IN11	J12-12	15k	10k	100p	
IN12	J12-13				
IN13	J12-14	101		1000	
IN14	J12-15	10k 1k 100			
IN15	J12-30				
IN16	J9-7				
IN17	J9-8				
IN18	J9-9	Opto			
IN19	J9-18				
ICOM2	J9-17				
IN20	J11-7	4.99k	10k	33n	
IN22	J11-24	15k	10k	100p	

HI/LO DEFINITIONS: INPUTS

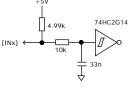

Input	State	Condition
IN11,20,22	HI	Vin >= 2.5 Vdc
11011,20,22	LO	Vin <= 1.3 Vdc
IN10 1F	HI	Vin > 2.5 Vdc
IN12~15	LO	Vin < 2.5 Vdc
IN16~19	HI	Input diode ON
11110~19	LO	Input diode OFF

IN16~19 are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF.

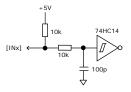

[IN11]

[IN12~15]

[IN16~19]

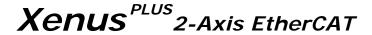

J9

[COMM2] (17


INPUTS WITH **PROGRAMMABLE** PULL UP/DOWN

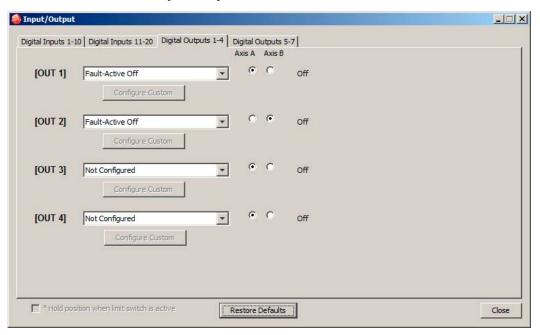
Pin	PU/PD
J12-12	5
J12-13	6
J12-14	7
J12-15	0
J12v-30	8
	J12-12 J12-13 J12-14 J12-15

[IN20]



[IN22]

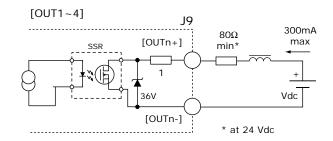
Fax: 781-828-6547


Fax: 781-828-6547

Page 21 of 36

CME2 & OUTPUTS 1~4 CONNECTIONS

OUTPUT CONNECTIONS

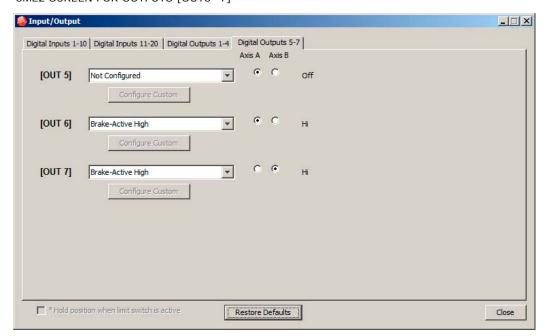

CME2 SCREEN FOR OUTPUTS [OUT1~4]

OUTPUT DATA

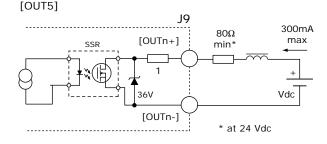
[OUT1~4] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J9-19	[OUT1-]	J9-10
[OUT2+]	J9-20	[OUT2-]	J9-11
[OUT3+]	J9-21	[OUT3-]	J9-12
[OUT4+]	J9-22	[OUT4-]	J9-13

HI/LO DEFINITIONS: OUTPUTS


Input	State	Condition			
OUT1~4	HI	Output transistor is ON, current flows			
0011~4	LO	Output transistor is OFF, no current flow			

CME2 & OUTPUTS 5~7 CONNECTIONS


CME2 SCREEN FOR OUTPUTS [OUT5~7]

OUTPUT DATA [OUT5] SIGNALS

Signal	Pins
[OUT5+]	J9-23
[OUT5-]	J9-14

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition		
OUT5	HI	Output transistor is ON, current flows		
0015	LO	Output transistor is OFF, no current flows		
BRK-A,B	НІ	Output transistor is OFF Brake is un-powered and locks motor shaft Motor cannot move Brake state is Active		
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor shaft Motor is free to move Brake state is NOT-Active		

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI"

Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move

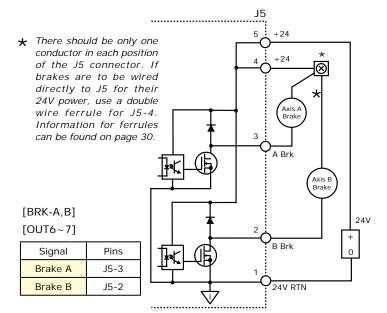
No current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as HI

BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive output current is zero

Servo drive is disabled, PWM outputs are off
Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*)


Motor can move

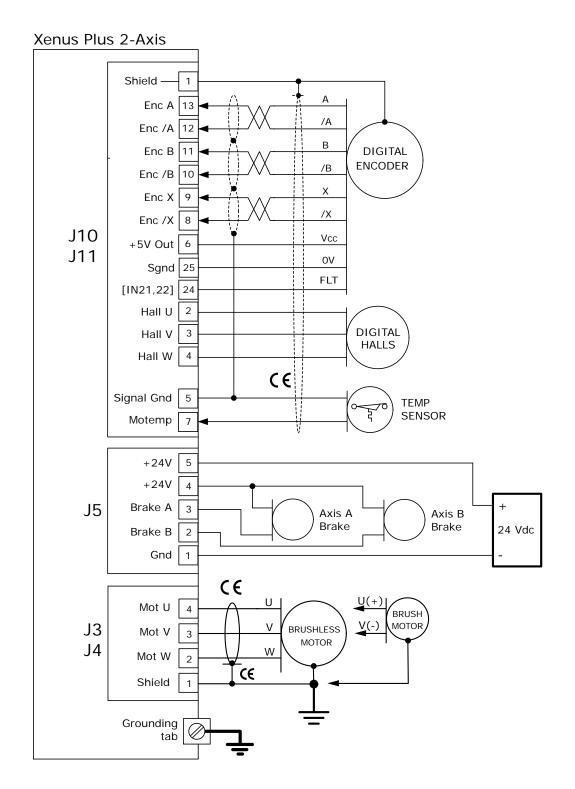
Current flows in coil of brake

CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (\sim 0V), MOSFET is ON

Servo drive is enabled, PWM outputs are on

Servo drive output current is flowing

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com


Fax: 781-828-6547 Page 22 of 36

MOTOR CONNECTIONS FOR DIGITAL INCREMENTAL ENCODERS: XE2-230-20

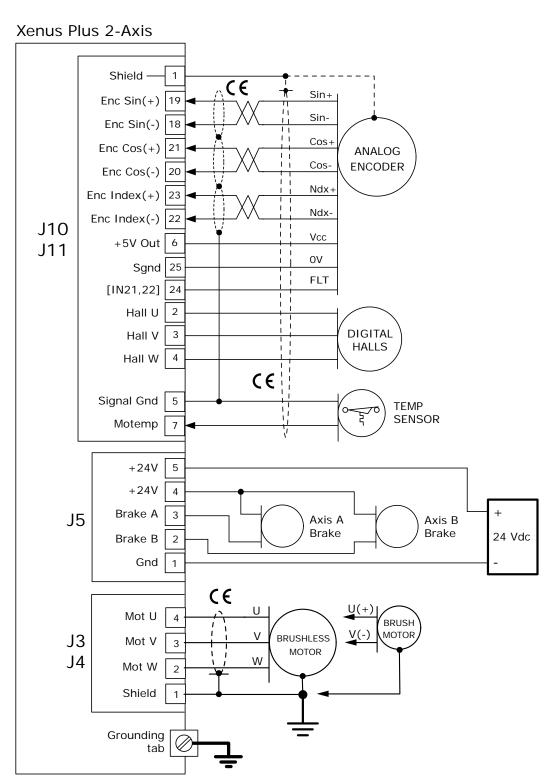
For XE2-230-20-R, digital encoder feedback is not supported on J10 & J11. Use the Multi-Port on J12 for this type of feedback.

NOTES:

- 1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA
- 2) CE symbols indicate connections required for CE compliance.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 23 of 36



MOTOR CONNECTIONS FOR ANALOG INCREMENTAL ENCODERS: XE2-230-20

For XE2-230-20-R, Sin/Cos/Index encoder feedback is not supported.

NOTES:

- 1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA
- 2) CE symbols indicate connections required for CE compliance.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 24 of 36

Fax: 781-828-6547

Page 25 of 36

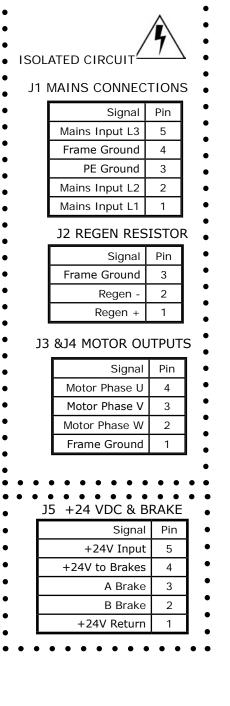
MOTOR CONNECTIONS FOR RESOLVERS: XE2-230-20-R

Digital incremental and absolute encoders may be connected to the Multi-Port on J12.

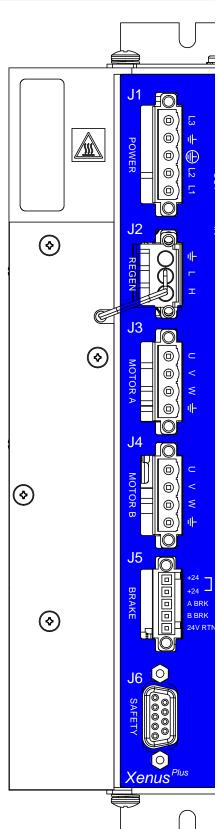
Xenus Plus 2-Axis Shield - ϵ Sin+S3 Rlvr Sin(+) 19 Sin-S1 Rlvr Sin(-) 18 Cos+ S2 Rlvr Cos(+) 21 **RESOLVER** Cos-S4 Rlvr Cos(-) 20 Ref+ R1 RIvr Ref(+) 23 Ref- R2 Rlvr Ref(-) 22 J10 J11 +5V Out | 6 Sgnd 25 [IN21,22] 24 Hall U Hall V Hall W ϵ Signal Gnd 5 TEMP **SENSOR** Motemp 7 +24V 5 +24V Brake A J5 3 Axis A Axis B Brake Brake 24 Vdc Brake B Gnd U Mot U BRUSH ٧ MOTOR **BRUSHLESS** J3 Mot V 3 MOTOR J4 W Mot W Œ Shield Grounding tab

NOTES:

- 1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA
- 2) CE symbols indicate connections required for CE compliance.

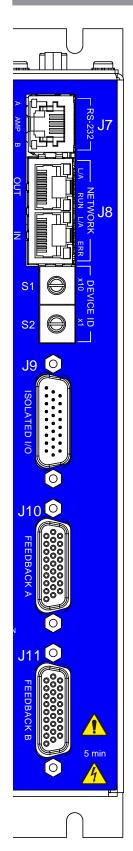


CONNECTIONS FOR XE2-230-20


WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 5 minutes after power is removed.

J5 STO

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		


Fax: 781-828-6547

Page 26 of 36

Rev 01 **XE2** RoHS

SIGNAL CONNECTIONS FOR XE2-230-20

J12 CONTROL (ON END PANEL)

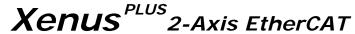
PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	Ref1(-)	17	5V Out3	32	5V Out3
3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
8	[IN2] GP	23	5V Out4	38	5V Out4
9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN12] HS	28	n.c.	43	n.c.
14	[IN13] HS	29	n.c.	44	Signal Gnd
15	[IN14] HS	30	[IN15]	·	

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

J10, J11 FEEDBACK

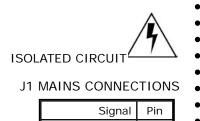
PIN	SIGNAL	PIN	SIGNAL		PIN	SIGNAL
1	Frame Gnd	10	Enc /B	l	19	Sin1(+)
2	Hall U	11	Enc B]	20	Cos1(-)
3	Hall V	12	Enc /A		21	Cos1(+)
4	Hall W	13	Enc A		22	Indx(-)
5	Signal Gnd	14	Enc /S		23	Indx(+)
6	+5V Out1(2)	15	Enc S		24	IN21(22)
7	Motemp IN10(20)	16	Signal Gnd		25	Signal Gnd
8	Enc /X	17	+5V Out1(2)		26	Signal Gnd
9	Enc X	18	Sin1(-)]		_


Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 27 of 36



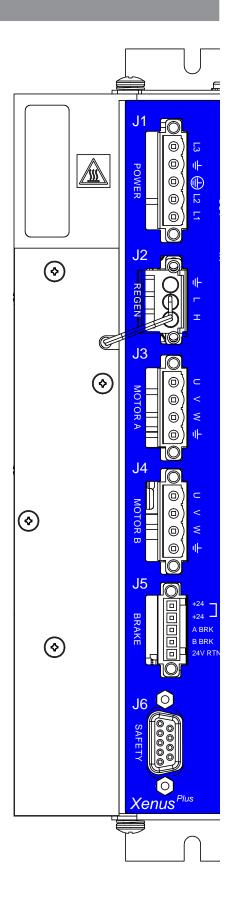
CONNECTIONS FOR XE2-230-20-R

WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 5 minutes after power is removed.

Signal	Pin
Mains Input L3	5
Frame Ground	4
PE Ground	3
Mains Input L2	2
Mains Input L1	1

J2 REGEN RESISTOR

Signal	Pin
Frame Ground	3
Regen -	2
Regen +	1


J3 &J4 MOTOR OUTPUTS

Signal	Pin
Motor Phase U	4
Motor Phase V	3
Motor Phase W	2
Frame Ground	1

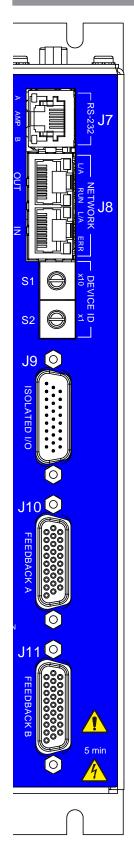
J5 +24 VDC & BRAKE			
Signal	Pin		
+24V Input	5		
+24V to Brakes	4		
A Brake	3		
B Brake	2		
+24V Return	1		

J5 STO

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 28 of 36



Rev 01 **XE2** RoHS

Fax: 781-828-6547

Page 29 of 36

SIGNAL CONNECTIONS FOR XE2-230-R

J12 CONTROL (ON END PANEL)

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	Ref1(-)	17	5V Out3	32	5V Out3
3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
8	[IN2] GP	23	5V Out4	38	5V Out4
9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN12] HS	28	n.c.	43	n.c.
14	[IN13] HS	29	n.c.	44	Signal Gnd
15	[IN14] HS	30	[IN15]		

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

J10, J11 FEEDBACK

N.C. = No Connection

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	10	N.C.	19	Sin1(+) S3
2	Hall U	11	N.C.	20	Cos1(-) S4
3	Hall V	12	N.C.	21	Cos1(+) S2
4	Hall W	13	N.C.	22	Ref(-) R2
5	Signal Gnd	14	N.C.	23	Ref(+) R1
6	+5V Out1(2)	15	N.C.	24	IN21(22)
7	Motemp IN10(20)	16	Signal Gnd	25	Signal Gnd
8	N.C.	17	+5V Out1(2)	26	Signal Gnd
9	N.C.	18	Sin1(-) S1		

Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

WIRING

AC POWER, REGEN, AND MOTOR OUTPUTS: J1~J4

Wago MCS-MIDI Classic: 231-305/107-000 (J1) 231-303/107-000 (J2), 231-304/107-000 (J3, J4), female connector; with screw flange;

3-pole; pin spacing 5.08 mm / 0.2 in

Conductor capacity

Bare stranded: AWG 28~14 [0.08~2.5 mm2] Insulated ferrule: AWG 24~16 [0.25~1.5 mm2]

Stripping length: 8~9 mm

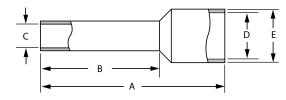
Operating Tool: Wago MCS-MIDI Classic: 231-159

.....

J1

J2

J3, J4


Tool

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES

PNUM = Part Number SL = Stripping length Dimensions: mm (in)

24V & BRAKE: J5

Wago MCS-MINI: 734-105/107-000, female connector; with screw flange,

5-pole; pin spacing 3.5 mm / 0.138 in

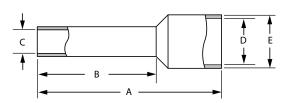
Conductor capacity

 Bare stranded:
 AWG 28~16 [0.08~1.5 mm2]

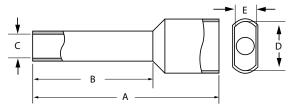
 Insulated ferrule:
 AWG 24~16 [0.25~1.5 mm2]

 Stripping length:
 0.24~0.28 in[6~7 mm]

 Operating tool:
 Wago MCS-MINI: 734-231


FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)


FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

DOUBLE WIRE

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 30 of 36

POWER & GROUNDING

DRIVE POWER SOURCES

An external +24 Vdc power supply is required, and powers an internal DC/DC converter that supplies all the control voltages for drive operation. Use of an external supply enables EtherCAT communication with the drive when the mains power has been removed.

Power distribution in *XE2* is divided into three sections: +24 Vdc, signal, and high-voltage. Each is isolated from the other and all are isolated from the chassis.

EXTERNAL +24 VDC

The primary side of the DC/DC converter operates directly from the external +24 Vdc supply and is isolated from other drive power sections. The Brake outputs operate in this section and are referenced to the +24 Vdc return (0V). They sink current from an external load connected to the external +24 Vdc power source.

INTERNAL SIGNAL POWER

The signal power section supplies power for the control circuits as well as logic inputs and outputs. Motor feedback signals such as Halls, encoder, and temperature sensor operate from this power source. All signal circuits are referenced to signal ground. This ground should connect to the control system circuit ground or common so that drive and controller inputs and output voltage levels work properly with each other.

MAINS POWER

Mains power drives the high-voltage section. It is rectified and capacitor-filtered to produce +HV which the PWM stages convert into voltages that drive either three phase brushless or DC brush motors. An internal solid-state switch together with an internal power resistor provides dissipation during regeneration when the mechanical energy of the motors is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition. All the circuits in this section are "hot", that is, they connect directly to the mains and must be considered high-voltages and a shock hazard requiring proper insulation techniques during installation.

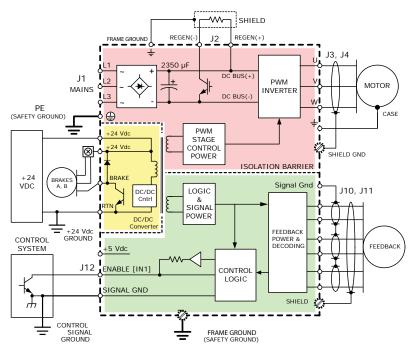
GROUNDING

A grounding system has three primary functions: safety, voltage-reference, and shielding. As a safety measure, the primary ground at J1-3 will carry fault-currents from the mains in the case of an internal failure or short-circuit of electronic components. Wiring to this is typically done with the green conductor with yellow stripe using the same gauge wire as that used for the mains. This wire is a 'bonding' conductor that should connect to an earthed ground point and must not pass through any circuit interrupting devices.

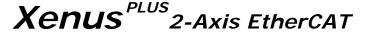
All of the circuits on J1, J2, J3, and J4 are mains-connected and must never be grounded. The frame ground terminals at J1-3, J2-3, J3-1, J4-1, J6-1, J9-1, J10-1, J11-1, and J12-1 all connect to the drive chassis and are isolated from all drive internal circuits.

Signal grounding references the drive control circuits to those of the control system. These controls circuits typically have their own earth connection at some point. To eliminate ground-loops it is recommended that the drive signal ground be connected to the control system circuit ground. When this is done the drive signal voltages will be referenced to the same 0 V level as the circuits in the control system. Small currents flow between controller and drive when inputs and outputs interact. The signal ground is the path for these currents to return to their power sources in both controller and drive.

Shields on cables reduce emissions from the drive for CE compliance and protect internal circuits from interference due to external sources of electrical noise. Because of their smaller wire gauge, these should not be used as part of a safety-ground system. Motor cases can be safety-grounded either at the motor, by earthing the frame, or by grounding conductors in the motor cables that connect to J3-1 & J4-1. These cables should be of the same gauge as the other motor phase cables.

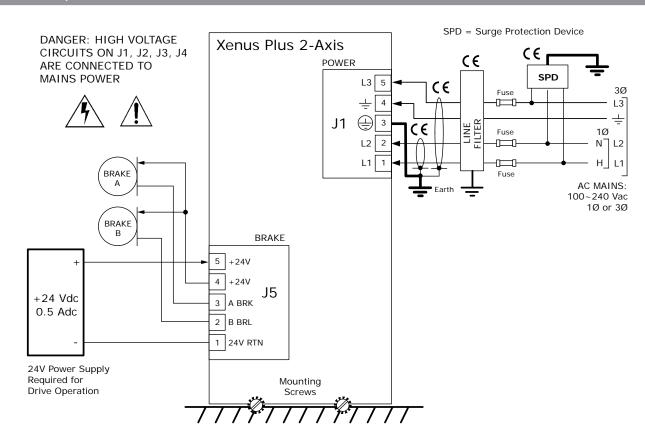

For CE compliance and operator safety, the drive heatplate should be earthed to the equipment frame. Mounting the drive using SEMS screws with external lock washers will make a good connection between the drive case and the equipment frame.

Fax: 781-828-6547


Page 31 of 36

POWER SECTIONS

The graphic below shows the different power sections of the Xenus Plus drive and the isolation barriers between them. Only one motor is shown but all motor PWM drivers are in the mains-connected section.



POWER, & BRAKE CONNECTIONS

Keep the chassis grounding connections short for best shielding performance

Notes

- 1) Items marked with CE are required for standards conformance.
- 2) In the end product installation, a UL RC (Recognized Component) SPD (Surge Protective Device) type 1CA, 2CA, 3CA or a UL Listed (VZCA) SPD type 1, 2, or 3 rated 2500 V, with a minimum SCCR of 5 kA, 240 Vac, and surge voltage monitoring needs to be provided if the over-voltage category of the installation is greater than Category II. When this occurs, the purpose of the SPD is to establish an over-voltage CAT II environment for the drives.
- 3) The line filter used in CE conformance testing was a Filter Concepts 3F15.
- 4) Fuses and/or circuit breakers are optional and can be selected by the user to meet local codes and/or machine construction requirements.
- 5) The internal regen resistor of the XE2 must be unplugged when using an external regen resistor. Only one regen resistor can be connected to the Regen connector J2.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com

Fax: 781-828-6547 Page 32 of 36

Rev 01 **XE2** RoHS (E

GROUNDING & SHIELDING

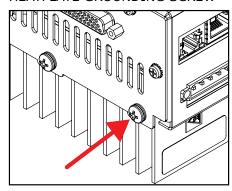
Grounding for Safety

The protective earth (PE) ground at J1-3 (for both single and dual axis drives), is the electrical safety ground and is intended to carry the fault currents from the mains in the case of an internal failure or shortcircuit of electronic components. Wiring to this ground should be done using the same gauge wire as that used for the mains. This wire is a "protective bonding" conductor that should be connected to an earthed ground point and must not pass through any circuit interrupting devices. The PE ground also connects to the drive heatplate (Frame Ground, FG). Connections of the regen and motor cable shields to the FG points (J2-1, J3-1) is done to prevent the motor or regen resistor housing from becoming hazardous in the event of an insulation failure. Protective earth connections for the motor and regen resistor housings are subject to local electrical codes and must be reviewed for compliance with those codes. It is the responsibility of the end user to ensure compliance with local electrical codes and any other applicable standards. It is strongly recommended that motor and regen resistor housings also be connected to protective earth connection points located as close to the motor and regen resistor as possible. In many applications, the machine frame is used as a primary or supplemental protective earth connection point for the motor and regen resistor housings

Grounding and Shielding for CE Compliance

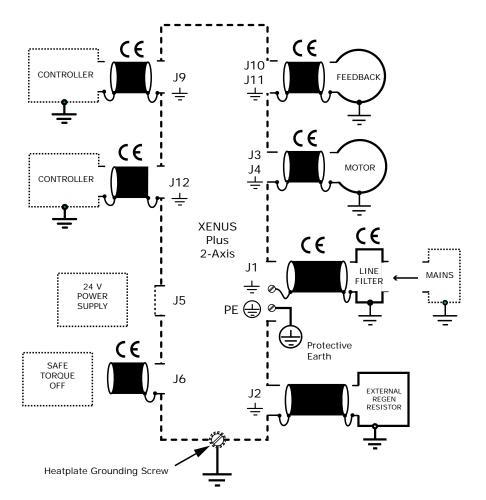
These connections are the means of controlling the emission of radio frequency energy from the drive so that it does not interfere with other electronic equipment. The use of shielded cables to connect the drive to motors and feedback devices is a way of extending the chassis of the drive out to these devices so that the conductors carrying noise generated by the drive are completely enclosed by a conductive shield. The FG ground terminals provide cable

shield connection points for the motor, feedback, and regen resistor cables. By connecting the shields for these devices at the drive and at the device, the connection is continuous and provides a return path for radio-frequency energy to the drive.


To further minimize electrical noise it is important to keep the connection between the drive heatplate and earth/equipment frame as short as possible. A Heatplate Grounding Screw is provided for making this connection.

Grounding for Leakage Current Requirements

The connection to the Heatplate Grounding Screw also provides a second protective earthing conductor to address the touch current requirements of IEC 61800-5-1.


Further information on this topic can be found in the Xenus Plus User Guide.

HEATPLATE GROUNDING SCREW

Keep the chassis grounding connections short for best shielding performance

Notes:

- 1) Shielded cables required for CE are shown in the diagram above.
- 2) Line filter required for CE

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 33 of 36

Decel time

Fax: 781-828-6547

Page 34 of 36

REGENERATION

The drive has has an internal regen resistor which can handle regenerative energy that exceeds the absorption capacity of the internal bus capacitance. The internal regen resistor will be switched on when the energy shown in the table has been absorbed and the bus voltage driven up to 390 Vdc at which point the internal regen resistor will be switched to absorb the kinetic energy of the load.

ABSORPTION

Vac	Ε
100	155
120	145
200	85
240	43

Absorption is the energy that can be transferred to the internal capacitors during deceleration. This table shows the energy absorption in W-s for a drive operating at some typical mains voltages. The capacitor bank is 2350 uF and the energy absorption is shared with both axes. If the deceleration energy is less than the absorption capacity of the drive, then a regeneration resistor will not be used because the bus voltage will not rise enough to hit the over-voltage level that would disable the PWM outputs.

Terms:

Velocity

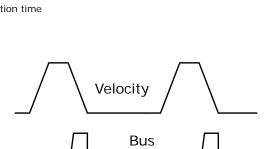
 $\begin{array}{ll} E & \mbox{ Energy } & \mbox{ Joules, Watt-seconds} \\ J & \mbox{ Rotary Moment of Inertia } & \mbox{ kg} \cdot \mbox{m}^2 \\ \end{array}$

Power Watts

CALCULATING THE REGEN REPETITION FREQUENCY

Step 1: Find the energy of motion for a rotating load, for this example let it be 75 Joules:

$$E = J * RPM^2 = 75 J$$
 Joules; kg·m², RPM 182

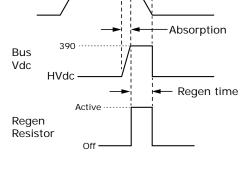

Step 2: Subtract the absorption at your mains voltage to get the energy that must be dissipated in the regen resistor. Use 240 Vac:

$$75J - 43J = 32 J$$
 Joules; Joules

Step 3: Divide the regen energy by the continuous power rating of 20 Watts to get the dwell time that can dissipate the regen energy in the resistor:

Step 4: Find the total regen cycle time by adding the deceleration time to the dwell time:

Decel Time = 1.25 sec Dwell Time = 1.60 sec Cycle Time = 2.85 sec

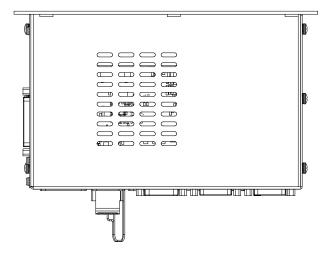


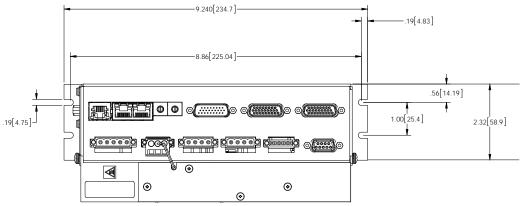
Voltage

Regen — Regen — Dwell Time — Regen — Cycle Time

INTERNAL REGEN RESISTOR

Max Energy	100 W·s (J)
Resistance	18 W
Power, continuous	20 W
Power, peak	70 W
Time	2000 ms




Fax: 781-828-6547


Page 35 of 36

DIMENSIONS

Units: in [mm]

Weight: 4.19 lb [1.90kg]

ORDERING INFORMATION

XE2-230-20	XE2 Servo Drive 10/20 Adc, Encoder feedback
XE2-230-20-R	XE2 Servo Drive 10/20 Adc, Resolver feedback

Example: Order one Xenus Plus XE2 drive, resolver version, solder-cup connector Kit, CME 2 CD, serial cable kit:

Qty Item Remarks

XE2-230-20-R Xenus Plus XE2 servo drive with resolver option XE2-CK-02 Connector Kit

1 XE2-CK-02 Connector Kit 1 CME 2 CME 2 CD 1 SER-CK Serial Cable Kit

ACCESSORIES

	Qty	Ref	Name	Description	Manufacturer P/N		
	1	J1	AC Pwr	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)		
	1]]	AC PWr	Strain relief, snap-on, 5.08 mm, 5 position, orange	Wago: 232-635		
	1	10	D	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)		
	1	J2	Regen	Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633		
	2	10.14		Plug, 4 position, 5.08 mm, female	Wago: 231-304/107-000 (Note 1)		
	2	J3,J4	Motor	Strain relief, snap-on, 5.08 mm, 4 position, orange	Wago: 232-634		
	1	ı.	D. I	Plug, 5 position, 3.5 mm, female	Wago: 734-105/107-000 (Note 1)		
	1	J5	Brake	Strain relief, snap-on, 3.5 mm, 5 position, grey	Wago: 734-605		
	1	J5	Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231		
XE2-CK Connector Kit	1 1 11 12 1	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159			
Kit	1			Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4		
	9	J6	0.5.1	AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9		
	1	Note 2	Safety	Metal Backshell, DB-9, RoHS	3M: 3357-9209		
	4			Jumper, with pins crimped on both ends	Copley: 10-75177-01		
	1	J12	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001		
	1	J 12	Control	Metal Backshell, DB-25, RoHS	3M: 3357-9225		
	1	J9	1/0	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 153-003245		
	2	J10~11	Feed-	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001		
	3	J9~11	back	Metal Backshell, DB-15, RoHS	3M: 3357-9215		
SER-CK	1	J7	RS-232	Serial Cable Kit			
XE2-NC-10	1	10	Notwork	EtherCAT® network cable, 10 ft (3 m)			
XE2-NC-01	J8 Network		Network	EtherCAT® network cable, 1 ft (0.3 m)			

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in XE2-CK)

REGENERATION RESISTOR (OPTIONAL)

XTL-RA-04	1	J2	Regeneration resistor assembly, 15 Ω

EDGE FILTER (OPTIONAL, ONE REQUIRED FOR EACH AXIS. QUANTITIES BELOW ARE FOR ONE FILTER AND ONE CONNECTOR KIT)

XTL-FA-01	1	J3~4	Edge filter				
Edge Filter		1	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047 (Note 1)			
Connector Kit XTL-FK		1	Plug, 5 position, 5.0 mm, male	Wago: 721-605/000-044 (Note 1)			
		2	Tool, wire insertion & extraction	Wago: 231-131			

Note: Specifications are subject to change without notice

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 36 of 36

Rev 6.02-we 08/12/2015